Retrieval-Augmented Generation (RAG) Project:这份开源资源帮你从零开始全面掌握RAG(检索增强生成)技术,实用且系统。

主要内容涵盖:
- 查询构建:将自然语言转成结构化查询(SQL、Cypher、向量检索)
- 查询翻译:分解、重构输入,提升检索效果
- 路由选择:动态选库或嵌入上下文,精准定位答案
- 检索优化:多种重排序算法+实时数据接入,确保结果相关性
- 索引管理:多重表征嵌入、分层摘要、结构化搜索提升效率
- 生成环节:自研Self-RAG和RRR,实现推理与检索的迭代闭环

每个笔记本都有详细的实操指导,适合入门到进阶,支持多查询、多模态等高级用法。

如果你从事机器学习、LLM或AI代理,强烈推荐收藏并实践。本资源极大降低了构建复杂RAG应用的门槛,助你快速搭建高效智能系统。

RAG的核心难题不只是架构,更是优质数据的积累与语料空白的补充。未来,递归推理与动态语料更新将成为关键突破点。
#资源参考 #RAG #开源RAG GitHub - bragai/bRAG-langchain: Everything you need to know to build your own RAG application
 
 
Back to Top